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In this paper a theoretical investigation of convection currents in anisotropic porous 
media is performed. The porous layer is homogeneous and bounded by two infinite 
petfectly heat-conducting horizontal planes. The criterion for the onset of convection 
is derived. The supercritical steady two-dimensional motion, the heat transport and 
the stability of the motion are investigated. Some of the results may be applied in 
insulation techniques. 

1, Tntroduction 
Free thermal convection in porous media has received considerable interest owing 

to its technical and geophysical applications. So far, theoretical and experiment4 
investigations have usually been concerned with isotropic porous media. However, 
in many problems the porous materials are anisotropic. This is the case for fibrous 
insulation materials, where convection currents may occur. Another important 
example is groundwater motion in sediments and other anisotropic rocks, especially 
in areas with geothermal activity. 

In most materials anisotropy in permeability is more pronounced than anisotropy 
in thermal diffusivity. This has been shown theoretically by Neale (1977) for the case 
of a thermally insulating matrix. For a conducting matrix no general conclusion can 
be drawn. Actually, anisotropy in thermal diffusivity can easily be made important 
by introducing thin parallel copper threads into the matrix. They can increw the 
diffusivity of the medium in their direction of alignment considerably, without 
influencing either the diffusivity in other directions or the permeability significantly. 

The papers on convection in anisotropic media are recent and not numerous. 
Castinel & Combarnous (1975) derived the stability criterion for porous media with 
anisotropic permeability and made experiments concerning the supercritical heat 
transport and temperature field. Epherre (1975) extended the stability analysis ta 
media with anisotropy in the thermal diffusivity also, and Tyvand (1977) took into 
account the effect of hydrodynamic dispersion caused by a uniform basic flow. Burne, 
Chow & Tien (1977) incotporated anisotropic permeability in their study of con- 
vection in vertical slots. Their study is relevant to insulation between walls, while 
the present study is relevant to insulation between floors and ceilings in buildings. 

Nonlinear convection in isotropic porous media was treated numerically by Elder 
(1967), Straus (1974) and Kvernvold (1975), and analjrtically by Palm, Weber & 
Kvernvold ( 197 2). 

In  this paper the onset of convection is analysed for more general types of anisotropy 
21 FLM 90 
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than in the papers by Castinel & Combarnous (1975) and Epherre (1975). Moreover, 
the effects of anisotropy on the supercritical motion and the heat transfer are analysed. 
The stability of the steady two-dimensional motion is also analysed. In the inter- 
pretation of the results we shall concentrate on some insulating properties. 

2. Governing equations 
We consider free thermal convection in a homogeneous porous layer saturated by a 

homogeneous fluid. The layer is bounded above and below by two infinite and im- 
permeable perfectly heat-conducting horizontal planes. The planes are separated by a 
distance h and have constant temperatures To and To - AT, the lower plane being the 
warmer. The saturated porous medium is assumed to have coinciding principal axes 
of permeability and thermal diffusivity. One of these axes is directed upwards, in the 
z direction. The x and y axes are defined by the directions of the other two principal 
axes. K,, Ka and K3 are the components of the permeability in the x, y and z directions, 
respectively. Similarly, K ~ ~ ,  Kma and K~~ denote the components of the diffusivity for 
the mixture of solid and fluid. 

We choose 
h, (cp  P)m h2/Am,, ~ m 3 / h ,  AT, PO v~mSlK3 (2.1) 

as units for length, time, velocity, temperature and pressure, respectively. c,, is the 
specific heat at  constant pressure, p the density, po a standard density and A, the 
thermal conductivity in the z direction. The governing equations in dimensionless 
form may then be written as (Rear 1972, p. 652) 

v+X.(Vp-RTk) = 0, (2.2) 

v . v  = 0, (2.3) 

aTP/at+V.VT = V.($B.VT). (2.4) 

Here Darcy's law and the Boussinesq approximation have been used and the density 
is assumed to be a linear function of the temperature T. The other fluid properties are 
assumed constant. t is the time and v ( = ui + vj + wk) is the velocity, where i, j and k 
denote the unit vectors in the x, y and z directions, respectively. R is the Rayleigh 
number defined as 

R = K3 gyATh/~,,,, V ,  (2.5) 

where g is the acceleration due to gravity and y is the coefficient of thermal expansion. 
X and 9 are dimensionless tensors of permeability and thermal diffusivity, re- 
spectively, and will be written as 

X =  [lii+[gjj+kk, (2.6) 

9 = viii+Tajj+kk, (2.7) 

Ci = Ki/K3, [a = Ka/& 11 = K m ~ / K m ~ ,  '% = Kma/Km3* (2.8) 

(2.9) 

where 

By eliminating the pressure from (2.2) and substituting the field variables written as 

T = To/AT - z +  O(z,y,z, t), v = v ( x , ~ ,  ~ , t )  
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into (2.2)-(2.4), we obtain the following equations: 

(2.10) 

v . v  = 0, (2.11) 

(2.12) 

The requirements of perfectly heat-conducting and impermeable boundaries yield the 
boundary conditions 

O=w=O at z=OJ1. (2.13) 

3. Linear theory 

introduce 
The onset of convection is described by the linear version of (2.10)-(2.13). We 

(3.1) 
w - eut sin nz exp [ i (kx + ly)]  

0 - ed sin 7 ~ z  exp [i(kx + Zy)], 

where k and 1 are the wavenumbers in x and y direction, respectively. u is the growth 
rate of the perturbation. The linear problem is easily shown to be self-adjoint. Then 
CT is real and marginal stability is given by cr = 0. The Rayleigh number for the onset 
of convection is found to be 

1 

Minimizing (3.2) with respect to k and 1 yields the critical Rayleigh number 

~ , = + ( m i n ( @ * ~  

We then have three cases. 

Case A :  71/61 < 72/62. 
Here the critical wavenumbers are 

k, = n(5171)-$, 4 = 0, 

which give rolls aligned in the y direction. 

(3.3) 

(3.4) 

Case B :  71/51 ’ 72It2’2’ (3.6) 

Here the critical wavenumbers are 

k, = 0, I ,  = n(5272)4, (3.7) 

Case C: 71/61 = 72/52. (3.8) 

which define rolls aligned in the x direction. 

Here the orientation of the rolls is undetermined. The critical wavenumber vector 

a, = k c i + l c j  
is constrained by the relation 

(61 7l)* k: + (62 72)* F = n2- 

(3.9) 

(3.10) 
21-2 
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In the case of horizontal isotropy, i.e. 

the results reduce to 

0. Kvernvold and P.  A .  Tyvand 

El = c 2  = 6,  

R, = T 2 [ ( V / t Y +  112, 

uc = (k: + 1:)s = 7r(&j+, 

Vl = 7 2  = 7, 

which were first obtained by Epherre (1975). 

(3.11) 

(3.12) 

4. Mathematical simplification of the nonlinear problem 

apply the following transformation to the governing equations : 
To examine the motion for supercritical Rayleigh numbers, it  proves useful to 

In the transformed system of equations the anisotropy parameters appear only as 
ratios ~ 1 / ~ 1  and c 2 / V 2 .  Accordingly, v* and B* are functions of cl/ql and t 2 / V 2 .  Without 
loss of generality, one of the parameters in each ratio can be put equal to 1. The 
mathematics will be simplified if we put el = c2 = 1.  Then, by making the inverse 
transformation, the equation of motion (2.2) reduces to 

v+Vp-RTk = 0, (4.2) 

which implies k . V x v = 0. Together with V . v = 0, this means that the velocity is 
a poloidal vector given by a single scalar function @ as 

v = V x (V x k$) = ($zs, l,hVz, -Vq$) 6@. (4.3) 

e = - R-v@. (4.4) 

From (2.10) the temperature field is given by 

Introducing (4.3) and (4.4) into the heat equation (2.12), we finally obtain 

The boundary conditions (2.13) are expressed as 

$ = $zz = 0 at z = 0 , l .  (4.6) 

The solutions of the above equations are transformed to give v* and 8*. Then the 
anisotropy in permeability is incorporated by replacing ql and q2 by r1/C1 and q2/t2, 
respectively. We notice that physical quantities such as the velocity and temperature 
distributions and the size of the cells depend on the four anisotropy parameters 
separately, not just the two ratios. However, mean quantities such as the Nusselt 
number 

N u  = l-[a-8/az],,, (4.7) 

(the overbar denoting a horizontal average), the critical Rayleigh number and the 
time variation depend only on the ratios &/Tl and e2/r2. 
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5. Numerical solution of the steady nonlinear .problem 
In  anisotropic media with &/rl + [ 2 / ~ 2  (cases A and B )  linear theory predicts 

two-dimensional motion. In  media with [l/ql = t2/r2 (case C) linear theory does not 
determine any particular horizontal planform. In  this case, however, a stability 
analysis of the nonlinear steady motion analogous to that of Schluter, Lortz & Busse 
(1965) shows that only two-dimensional motion is stable for small supercritical 
Rayleigh numbers. We shall therefore consider only two-dimensional motion in all 
three cases. 

Without loss of generality, we shall assume cl/rl 2 [ z / q z  from now on. This implies 
that the rolls are oriented along the y axis. The steady problem is then described by 
assuming a/at = 8/89 = 0 in (4.5). 

For small supercritical Rayleigh numbers the problem may be solved analytically; 
see the appendix. For larger supercritical Rayleigh numbers numerical methods must 
be applied. Using Galerkin’s method, the steady solution of (4.5) subject to the 
boundary conditions (4.6) may be written as 

m m  

$ = I: I: A,,exp(inax)sinmnz, 
n = - m  m = l  

where each term in the series satisfies the boundary conditions (4.7). The symmetry 
of the problem implies the restriction 

A n m  = A - n m ,  (5.2) 

corresponding to convection cells which are not tilted. 
To determine the unknown amplitudes A,,, we substitute (5.1) into ( 4 4 ,  multiply 

by exp ( -  ipax) sinqm and average over the whole fluid layer. We then obtain an 
infinite set of algebraic equations for the Anm: 

((rf n 2 a 2  + mz+) (nzd + mW) - Rn2a2) A,, 

-+ Z ~m.qAn- -p , (m-q)a , .qApq(P2a2+q2~2)  ( ~ m - q n )  ( n - ~ )  a2n 

- 9 I: A,-p,m+qApq(pza2 + q2n2) (pm + qn) (n-p) a2n = 0, 

P, P 

(5.3) 
P, !2 

where I & 1 for m>< q, 

0 for m = 0. 8m.q = { (5.4) 

In  order to solve these equations, it  is necessary to truncate the series (5.1). We 
choose to neglect all terms with 

where N is a sufficiently large number. Because of the symmetry in (5.3), the solution 
will contain only amplitudes with n + m even, giving + N ( N  + 1) equations to be solved. 
For a given N the algebraic equations are solved by a Newton-Raphson iteration 
procedure. Usually we need less than five iterations to obtain a satisfactorily exact 
solution. 

The truncation parameter N is determined by assuming the solution to be suffi- 
ciently accurate if replacing N by N + 1 produces a change in the Nusselt number 
Nu of less than 1 %. Table 1 shows the variation of the Nusselt number with N for 
some characteristic cases. 

(121 + 9 @ +  1) > N ,  (5.5) 
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5 -  

4 -  

3 -  z 
2 -  

1 -  

R/R, = 8, &/ql  = 1, R/Rc = 12.6,.$/q1 = 10, 
N a/a, = 2.5 u/ac = 4 

6 6.23 6.93 
7 6.27 7.22 
8 5-29 7-37 
9 - 7.45 

TABLE 1. The variation of the Nusselt number with the truncation parameter N .  

€1/111= 0.1 

I I I I I I 1 I 
0 40 80 120 160 200 240 280 

FIGUI~E 1. Nu vs. R for various values of gl/ql. - , theoretical results. Trend of experimental 
results: x , Caatinel & Combarnous (1976) for & / T ~  = 2.08; , Buretta (1972) for &/ql = 1. 

R 

To characterize the steady two-dimensional motion, we choose to concentrate on 
the Nusselt number. This is primarily because the heat transport is the most interesting 
physical quantity, but also because Nu is dependent on the anisotropy parameters 
only in the form g1/vl. 

In figures 1-4 we have displayed some results for the Nusselt number. For every 
choice of R and &/vl we have chosen the wavenumber which gives the maximum 
value of Nu. The variation of the Nusselt number with the wavenumber in the regime 
of stable two-dimensional motion is within 5 % for horizontally isotropic media (see 
Kvernvold 1975). For horizontally anisotropic media, however, the variation may be 
larger, because the rolls in this case are stable for a wider range of wavenumbers 
(see Q 7). 

Figure 1 shows Nu as a function of R for different values of &/ql. We also display 
some results from experiments performed in anisotropic porous media by Castinel 
& Combarnous (1 975) and some results from experiments in isotropic porous media by 
Buretta (1972). The results from the isotropy experiments fit well with our theoretical 
values. The results from the anisotropy experiments are, however, somewhat below 
the theoretical ones. We believe that this discrepancy is due to effects in the experi- 
mental set-up which does not satisfy the idealized theoretical model. 

In  figure 1 the main differences between the curves are due to the different critical 
Rayleigh numbers. This is a purely linear effect. To exhibit the nonlinear effects of 
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RIR, 
FIUuRE 2. Nu v8. R/Rc for various values of tl/vl. 
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FIQURE 3. Nu as a function of &/ql for R/Rc = 5.0. --, Nu v8. (&/%)* for 

o c l1/v1 G 1; . . . , ., Nu v8. ([l/vl)-h for 1 d c 00. 
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RIR, 
FIQURE 4. The value of &/q1 giving the minimum Nu for each value of R/R,. 

anisotropy on the Nusselt number, in figure 2 we display Nu as a function of R/R,. 
In the appendix we show analytically that all these curves start out with the same 
slope, independent of &/ql .  For moderate anisotropy and moderately supercritical 
Rayleigh number, the deviations from the isotropy curve are small. 

In  figure 3 we show the Nusselt number v.9. &/ql for R/Rc = 5.0. The qualitative 
features in figure 3 are the same for all relevant values of R/R,: any value of &/q1 
larger than unity gives a larger Nusselt number than the corresponding inverse value. 
Furthermore, t1/ql+ 0 yields the maximum Nusselt number. The value of &/q1 which 
gives the minimum Nu does, however, vary with R/Rc. Figure 4 shows this variation. 
From the analytical results in the appendix it follows that minimum Nu when 
RIR,+ 1 occurs for f J q l  = 9. 

6. Stability of the steady two-dimensional motion 
It is of interest to determine the range of wavenumbers and Rayleigh numbers for 

which two-dimensional motion is stable with respect to small disturbances. We 
replace $ by 9-1- I,P in ( 4 4 ,  where $'(q y, z, t )  is a small disturbance of the steady 
solution. The equation for is linearized and becomes 

with boundary conditions 
I,P = $is = 0 at z = 0 , l .  

If there exists a solution of (6.1) with growing time dependence, the steady solution 
is said to be unstable. Otherwise it is stable. 
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FIGURE 3. Stability domains for the steady two-dimensional motion in the a/a,, R/R, plane 
for selected values of f / q  (horizontal isotropy). -, E/v = 1: - - - - -)  6/11 = 100; I E/?/ = &a. 

The solution is written as 

f = Z: A : , , e x p ( i n ~ ) e x p [ i ( d z + b y ) + d ] s i n m n z .  
n, m 

The equations for the unknowns A,!,, , are obtained by multiplying (8.1) by 

exp ( - ipax) exp [ - i ( d z  + by) - d] sin qnz 

and averaging over the whole fluid layer. We neglect, as in the steady case, all terms 
with 1.1 + i ( m  + 1) > N J  where N has the same value as in the corresponding steady 
problem. The system of linear homogeneous equations constitutes an eigenvalue 
problem for u. The analyeis is simplified because the system separates into two 
sub-systems with n + m even and n + m odd, respectively. 

The eigenvalue is given by 
SS u(a, R J  b,  (6.4) 

and for a given a and R, we have to vary both & and d to find the most unstable disturb- 
ances. Numerical results show that those occur for either b = 0 or d = 0. Disturbances 
with b = 0 have axes parallel to the axes of the steady rolls. The comsponding 
instability is referred to as Eckhaus instability. Disturbances with d = 0 give rise to 
instability which is termed cross-roll instability if b is of the same order of magnitude 
as ac and zigzag instability if b + 0. 
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0 
I 2 3 4 5 6 

d% 
FIGURE 6. Stability domains for the steady two-dimensional motion in the ala,, R/Re plane. 
I, horizontaJ isotropy, 5/7j = 10; 11, &/ql = 10, & / T r  = 8; In, ll/7]1 = 10, 58/81 = 1; m, 
&/Tl = 10, la/Ta = 0; V, neutral curve for the onset of convection; -, cross-roll instability; 
-x-, zig-zag instability; - - - - - , oscillatory Eckhaus instability; - - -, exponential Eckhaus 
instability. 

We first consider the case of horizontal isotropy, defined by El = Ez = E, ql = q2 = q.  
In this case it turns out that cross-rolls are the most unstable disturbances, except 
for a domain with a < ac and R moderately supercritical, where zigzag instability 
occurs. The stability regions for two rather extreme values of fJq (& and 100) are 
shown in figure 5. For comparison the case of isotropy (EJq = 1) is also displayed. 
The domains of stability lie within closed curves, giving upper limits on the Rayleigh 
number for which steady two-dimensional motion is stable. No oscillatory instability 
will occur for horizontal isotropy. Values of $/q between the values represented on 
figure 5 give stability regions intermediate between the regions displayed. Except for 
a small discrepancy in the zigzag instability, the curve for isotropy is the same as those 
obtained by Straus (1974) and Kvernvold (1975). 

Let us consider media which are horizontally anisotropic (&/al 2 tZ /qz) .  The steady 
motion is the same &B for horizontally isotropic media with the same value of &/ql .  
The stability is, however, fundamentally different. This is because the horizontal 
anisotropy makes cross-rolls and zigzags linearly stable in a certain domain of RIB,., 
which is larger the more C2/q2 deviates from El/ql. In  this region the stability bounds 
are determined by Eckhaus instability, which is independent of Eckhaus 
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disturbances are generally more stable than cross-rolls. Consequently, a horizontally 
anisotropic medium has a larger stability region than a horizontally isotropic medium 
with the same steady solution. 

A convenient way to demonstrate the effects of horizontal anisotropy on the 
stability domain is to keep t1/ql fixed, which means that the steady problem is fixed, 
and allow t2/q2 to take values from zero to fl/?,. We shall display only one example, 
&/ql = 10 (figure 6), because the qualitative features are the same for other values of 
& / T ~ .  Here E2/q2 is given decreasing values. Starting with the horizontally isotropic 
case, C2/qa = 10 (curve I), we get a stability domain consistent with those in figure 5. 
Curve I1 is given by 62/332 = 8; the enlargement of the stability domain is already 
remarkable. Curve I11 is given by 12/q2 = 1; the left-hand branch of the stability 
domain is now determined by Eckhaus instability at least to R/Rc = 14. Curve I V  
represents the extreme case &/q2 = 0; then only Eckhaus disturbances are possible. 
We observe that for horizontal anisotropy oscillatory Eckhaus instability may occur 
for a < a,. 

It is believed that, in all cases with 52/332 non-zero, the cross-rolls will close the 
stability domain for finite values of R/R,. The case t2 /q2  = 0 may be interpreted as a 
generalized Hele-Shaw cell. The calculations show in this case no tendency to yield 
an upper limit beyond which two-dimensional motion is unstable. This is also sup- 
ported by Horne & O'Sullivan (1974), who found steady motion in a Hele-Shaw cell 
for R up to 30Rc by a finite-element method. 

7. Applications to insulation techniques 
We shall use the above general results to discuss some aspects of the insulating 

properties of transversely isotropic porous materials, which we define to have equal 
permeabilities and thermal diffusivities in all directions normal to a specified direction. 
Let KI and KII denote the longitudinal and transverse permeability, respectively, 
and K~~ and K~~~ the longitudinal and transverse effective diffusivity, respectively. 
Four typical examples of transversely isotropic media are sketched in figure 7. 

Our aim is to minimize the loss of heat through a horizontal layer. In  the conduction 
regime the heat transport is proportional to the vertical thermal diffusivity. It is 
therefore important to orientate the material such that minimum vertical diffusivity 
is achieved. Further, it is important to delay the onset of convection, because the 
occurrence of convection increases the total heat transport. For horizontal isotropy 
given by 

(7.1) 

the critical temperature difference is, from (3.12), 

51 = 6 2  = KII/KI, 71 = 332 = 5iaII/KmI, 

When the material is turned through 90' we get isotropy in, say, the x, z plane. Then 
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K I ,  K , , , I J  - KII. KJJll l ,  

i 

P 

0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  l---Tlb 0 0 0 0 0  

FIGURE 7. Sketches of transversely isotropic nedia composed of equally spaced, parallel per- 
forated plates or parallel fibres. (a) Horizontal plates. ( b )  Vertical plates. (c) Vertical fibres. 
(d) Horizontal fibres. 

The class of materials defined by 

KrndKI > K~II/KII ( 7 4  

may appropriately be termed 'parallel perforated plates'; see figures ?(a)  and (b). 
Equations (7.2) and (7.4) imply that horizontal plates have a larger critical tem- 
perature difference than vertical plates. 

The other class of materials, defined by 

KmT/KI %%II/K119 ( 7 4  

will be termed 'parallel fibres'; see figures 7 (c) and (d). The critical temperature 
difference is the same for horizontal and vertical fibres. 

The dimensionless heat transport after the onset of convection is measured by the 
Nusselt number. Figure 2 shows that the Nusselt number dependence on R/R, is 
different for different anisotropy. It is, however, the dimensional heat transport which 
is of importance from a physical point of view. But, because of the different effects 
involved in the heat transport, further conclusions can be given only for special cases. 

= K , ~ ~ ) .  This is a An interesting special case is a thermally isotropic material 
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FrauRE 8. Comparison of the heat flux w. temperature difference for tranevereely isotropic media 
with equal, isotropic diffusivities and K,, kept fixed. I, K,/K, ,  = 100, longitudinal direction 
vertical; 11, K,/KII  = 100, horizontal; 111, K,/K,, = 10, vertical; IV, K,/K,  = 10, horizontal; 
V, KI/KII < 1 ,  horizontal; VI, K,/K, = iL6, vertical; VII, K,/K,, = &, vertical; ---, two- 
dimensiond steady motion unstable. 

good approximation for most insulation materials. In  this case we conclude the 
following. 

(i) Horizontal fibres always allow less heat transport than the same fibres turned 
vertically. The critical temperature difference is the same, and the difference in heat 
transport is solely due to the difference in Nusselt number as given by figure 3. 

(ii) For perforated plates the problem is more complicated. The Nusselt number 
for horizontal plates is given by the lower branch (dotted curve) in figure 3. It is less 
than the Nusselt number for vertical plates when KI/KII is small and greater when 
K I / K I I  is large. The Nusselt number for vertical plates is the same as for isotropy. 
The critical temperature difference is, however, larger for horizontal plates than for 
vertical plates, so that the total heat transport (conduction + convection) is always 
greater for vertical plates than for horizontal plates. This is evident from figure 8, 
where we have displayed the heat flux us. the temperature difference for various 
values of KI with K,, and K ~ ,  = K,,~ constant. Curve V gives the heat flux for vertical 
plates, while curves V I  and VII give the heat flux for two types of horizontal plates. 
From this figure we conclude that the type of thermally isotropic medium which gives 
the best insulation is a horizontally isotropic medium with as small a vertical perme- 
ability as possible. 

The above conclusions are strictly valid only in the regions where two-dimensional 
motion is stable. However, both experiments (Krishnamurti 1970) and theory 
(Tveitereid 1977) indicate that the heat transport is nearly independent of the hori- 
zontal planform. We therefore expect the heat transport given by the two-dimensional 
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solution to have a quantitatively acceptable value even for Rayleigh numbers in the 
unstable regime. 

8. Summary 
A theoretical analysis of thermal convection in anisotropic porous media has been 

performed. The criterion for the onset of convection was derived. Moreover, the 
supercritical steady two-dimensional motion was investigated both numerically and 
analytically, and regions of stable wavenumbers and Rayleigh numbers were found. 

It was shown that the Nusselt number and the stability regions depend on the 
anisotropy parameters only through the ratios El/r,Jl and Ez/r,J2. The velocity and 
temperature fields, however, depend on the appropriate values of El, c,, rl and r , ~ ~ .  

From figure 2 we observe that the nonlinear effects of anisotropy on the Nusselt 
number are not very pronounced. Actually, all curves of N u  v8. R/Rc start out with the 
same slope. The linear effects of anisotropy are usually much more important, as 
shown in figures 1 and 8. Figure 8 illustrates the problem of orientating a given porous 
material in order to minimize the heat transport. It has a bearing on insulation 
techniques, and this aspect is discussed separately. 

The steady two-dimensional motion is the same for both horizontally anisotropic 
and horizontally isotropic media (for the same E1/Tl). The stability regions are, 
however, of different character. For horizontal isotropic media (case C) the stability 
regions do not differ qualitatively from the results obtained for fully isotropic porous 
material by Straus (1974) and Kvernvold (1975). For horizontally anisotropic media 
(cases A and B)  the orientation of a roll is determined by the linear theory. The 
steady two-dimensional motion is now stable for a wider range of wavenumbers and 
Rayleigh numbers than in the corresponding problem of horizontally isotropic media; 
see figure 6. This is because horizontal anisotropy renders cross-rolls linearly stable in 
a certain supercritical domain of R/R,. This domain is larger the more -&/7jl, differs 
from 52/T2' 

The authors wish to thank Dr M. Tveitereid and Dr J. E. Weber for valuable dis- 
cussions during the preparation of this paper. 

Appendix 
Near the critical Rayleigh number, the problem may be solved analytically by the 

method introduced by Kuo (1961) and applied by Palm et al. (1972). The expansion 
parameter 6 is defined by 

= (R - Rc)/R, (A 1) 

giving (A 2) 

where R, = Rc/( 1 - €28). (A 3) 

R = Rc/( 1 - €2) = R, + R,(@ + €4 + . . . + E%), 

The calculation follows closely that of Palm et al. (1972), but is performed to only 
fourth order. The advantage of expressing R aa the finite sum (A 2) is to improve the 
convergence of the method; see Palm et aE. (1972). Following Kuo's idea we choose 
8 = N when solving the system to order 2N. With this choice of 8,  (A 2) gives an exact 
representation of R. 
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1 9 

Analytical 1.421 1.387 1.369 1-360 1.357 1.364 
Numerical - 1.382 1.363 1.362 1.350 - 
Analytical 2.094 1.943 1.865 1.823 1-813 1.844 
Numerical - 1.010 1.808 1.757 1.747 - 
Analytical 3-250 2.849 2.64 1 2.528 2.500 2.583 
Numerical - 2.658 2.383 2.261 2.234 - 
TABLE 2. Analytical and numerical results for the Nusselt number (a = ao). 

1.2 { 

2.0 { 
1.5 { 

The solution of (4.6) subject to the boundary conditions (4.7) is written as 
W 

$ = €,fl,), 
n-I 

where = A, cos oz sin zx + ;I; B&? cospax sin qnz. 
P, Q 

Here a is the horizontal wavenumber, which will be chosen equal to the critical wave- 
number in this analytical calculation. The amplitudes A, are determined from the 
solvability conditions on the inhomogeneous differential equation to each order in 8, 

which give 

Further, BL? = BL:)(Al, ..., AnWl). 

Let NU@) and Nu(,) denote the Nusselt number to second and fourth order, respectively. 
The anisotropy in permeability is now incorporated in the results, i.e. vl is replaced 

The expression for shows that all curves for N u  us. R/Rc start out with the same 
slope, independent of &/rl. In table 2 we give some results for Nu(4) for s = 2 and 
different values of R/Rc and gl/rl. For comparison the corresponding results of the 
numerical calculation are also quoted. The table shows satisfactory agreement 
between numerical and analytical results for R/Rc < 1.5. The minimum and maximum 
values of Nu(4) occur for El/rl = 9 and &/rl -+ 0, respectively. 
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